

www.ti.com SLUSAP2 –JANUARY 2012

Highly Integrated Digital Controller for Isolated Power

Check for Samples: UCD3138

1 Introduction

1.1 Features

- Digital Control of up to 3 Independent Feedback Loops
 - Dedicated PID based hardware
 - 2-pole/2-zero configurable
 - Programmable
 - Non-Linear Control
- Up to 16MHz Error Analog to Digital Converter (EADC)
 - Configurable Resolution as Small as 1mV/LSB
 - Automatic Resolution Selection
 - Up to 8x Oversampling
 - Hardware Based Averaging (up to 8x)
 - 14 bit Effective DAC
- Up to 8 High Resolution Digital Pulse Width Modulated (DPWM) Outputs
 - 250ps Pulse Width Resolution
 - 4ns Frequency Resolution
 - 4ns Phase Resolution
 - Adjustable Phase Shift Between Outputs
 - Adjustable Dead-band Between Pairs
 - Up to 2MHz Switching Frequency
- Configurable PWM Edge Movement
 - Trailing Modulation
 - Leading Modulation
 - Dual Edge Modulation
- Configurable Feedback Control
 - Voltage Mode
 - Average Current Mode
 - Peak Current Mode Control
 - Constant Current
 - Constant Power
- Configurable Modulation Methods
 - Frequency Modulation
 - Phase Shift Modulation
 - Pulse Width Modulation
- Fast, Automatic and Smooth Mode Switching
 - Frequency Modulation and PWM
 - Phase Shift Modulation and PWM
- High Efficiency and Light Load Management
 - Burst Mode
 - Ideal Diode Emulation

- Synchronous Rectifier Soft On/Off
- Low IC Standby Power
- Soft Start / Stop with and without Pre-bias
- Fast Input Voltage Feed Forward Hardware
- Primary Side Voltage Sensing
- Copper Trace Current Sensing
- Flux and Phase Current Balancing for Non-Peak Current Mode Control Applications
- Current Share Bus Support
 - Analog Average
 - Master/Slave
- Feature Rich Fault Protection Options
 - 7 High Speed Analog Comparators
 - Cycle-by-Cycle Current Limiting
 - Programmable Fault Counting
 - External Fault Inputs
 - 4-10 Digital Comparators
 - Programmable blanking time
- Synchronization of DPWM waveforms between multiple UCD313x devices
- 14 channel, 12 bit, 265 ksps General Purpose ADC with integrated
 - Programmable averaging filters
 - Dual sample and hold
- Internal Temperature Sensor
- Fully Programmable High-Performance 31.25MHz, 32-bit ARM7TDMI-S Processor
 - 32 kByte (kB) Program Flash
 - 2 kB Data Flash with ECC
 - 4 kB Data RAM
 - 4 kB Boot ROM Enables Firmware Boot-Load in the Field via I²C or UART
- Communication Peripherals
 - I²C/PMBus
 - 2 UARTs
- JTAG Debug Port
- · Timer capture with selectable input pins
- Up to 5 Additional General Purpose Timers
- Built In Watchdog: BOD and POR
- 64-pin QFN and 40-pin QFN packages
- Operating Temperature: –40°C to 125°C
- Fusion Digital Power GUI Support

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLUSAP2 –JANUARY 2012 www.ti.com

1.2 Applications

- Power Supplies and Telecom Rectifiers
- Power Factor Correction
- Isolated dc-dc Modules

2 Overview

2.1 Description

The UCD3138 is a digital power supply controller from Texas Instruments offering superior levels of integration and performance in a single chip solution. The flexible nature of the UCD3138 makes it suitable for a wide variety of power conversion applications. In addition, multiple peripherals inside the device have been specifically optimized to enhance the performance of ac/dc and isolated dc/dc applications and reduce the solution component count in the IT and network infrastructure space.

The UCD3138 is a fully programmable solution offering customers complete control of their application, along with ample ability to differentiate their solution. At the same time, TI is committed to simplifying our customer's development effort through offering best in class development tools, including application firmware, Code Composer Studio™ software development environment, and TI's Fusion Power Development GUI which enables customers to configure and monitor key system parameters.

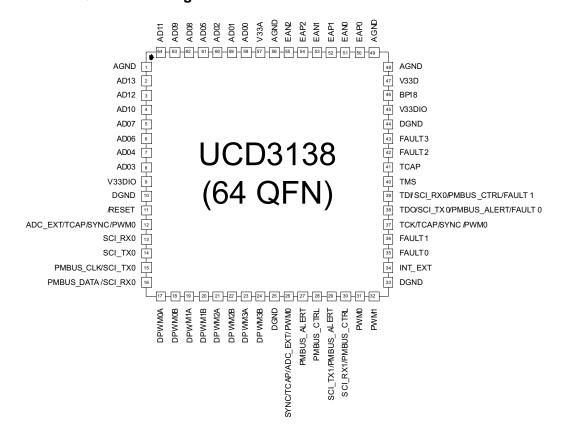
At the core of the UCD3138 controller are the digital control loop peripherals, also known as Fusion Digital Power Peripherals (FDPP). Each FDPP implements a high speed digital control loop consisting of a dedicated Error Analog to Digital Converter (EADC), a PID based 2 pole–2 zero digital compensator and DPWM outputs with 250 ps pulse width resolution. The device also contains a 12-bit, 265ksps general purpose ADC with up to 14 channels, timers, interrupt control, JTAG debug and PMBus and UART communications ports. The device is based on a 32-bit ARM7TDMI-S RISC microcontroller that performs real-time monitoring, configures peripherals and manages communications. The ARM microcontroller executes its program out of programmable flash memory as well as on-chip RAM and ROM.

In addition to the FDPP, specific power management peripherals have been added to enable high efficiency across the entire operating range, high integration for increased power density, reliability, and lowest overall system cost and high flexibility with support for the widest number of control schemes and topologies. Such peripherals include: light load burst mode, synchronous rectification, LLC and phase shifted full bridge mode switching, input voltage feed forward, copper trace current sense, ideal diode emulation, constant current constant power control, synchronous rectification soft on and off, peak current mode control, flux balancing, secondary side input voltage sensing, high resolution current sharing, hardware configurable soft start with pre bias, as well as several other features. Topology support has been optimized for voltage mode and peak current mode controlled phase shifted full bridge, single and dual phase PFC, bridgeless PFC, hard switched full bridge and half bridge, and LLC half bridge and full bridge.

SLUSAP2 - JANUARY 2012 www.ti.com

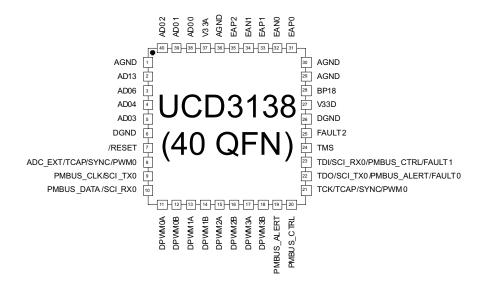
2.2 **Ordering Information**

PART NUMBER	PIN COUNT	PACKAGE	SUPPLY	TOP SIDE MARKING	OPERATING TEMPERATURE RANGE, T _A		
UCD3138RGCT	64	QFN	250 (Small Reel)	UCD3138	–40°C to 125°C		
UCD3138RGCR	64	QFN	2000 (Large Reel)	UCD3138	–40°C to 125°C		
UCD3138RHAT	40	QFN	250 (Small Reel)	UCD3138	–40°C to 125°C		
UCD3138RHAR	40	QFN	2500 (large Reel)	UCD3138	–40°C to 125°C		


Product Selection Matrix 2.3

FEATURE	UCD3138 64 PIN	UCD3138 40 PIN
ARM7TDMI-S Core Processor	31.25 MHz	31.25 MHz
High Resolution DPWM Outputs (250ps Resolution)	8	8
Number of High Speed Independent Feedback Loops (# Regulated Output Voltages)	3	3
12-bit, 265ksps, General Purpose ADC Channels	14	7
Digital Comparators at ADC Outputs	4	4
Flash Memory (Program)	32 KB	32 KB
Flash Memory (Data)	2 KB	2 KB
Flash Security	\checkmark	√
RAM	4KB	4 KB
DPWM Switching Frequency	up to 2 MHz	up to 2 MHz
Programmable Fault Inputs	4	1 + 2 ⁽¹⁾
High Speed Analog Comparators with Cycle-by-Cycle Current Limiting	7 ⁽²⁾	6 ⁽²⁾
UART (SCI)	2	1 + 1 ⁽¹⁾
PMBus	√	√
Timers	4 (16 bit) and 1 (24 bit)	4 (16 bit) and 1 (24 bit)
Timer PWM Outputs	2	1
Timer Capture Inputs	1	1 ⁽¹⁾
Watchdog	√	√
On Chip Oscillator	\checkmark	√
Power-On Reset and Brown-Out Reset	√	√
JTAG	√	√
Package Offering	64 Pin QFN (9mm x 9mm)	40 Pin QFN (6mm x 6mm)
Internal Reference (Tolerance)	±1%	±1%
Sync IN and Sync OUT Functions	√	√
Total GPIO (includes all pins with multiplexed functions such as, DPWM, Fault Inputs, SCI, etc.)	30	17
External Interrupts	1	0

This number represents an alternate pin out that is programmable via firmware. See the Peripherals Programming manual for details. To facilitate simple OVP and UVP connections both comparators B and C are connected to the AD03 pin.


2.4 UCD3138 64 QFN - Pin Assignments

SLUSAP2 - JANUARY 2012

2.5 UCD3138 40 QFN - Pin Assignments

7-Feb-2012

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
UCD3138RGCR	PREVIEW	VQFN	RGC	64	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
UCD3138RGCT	PREVIEW	VQFN	RGC	64	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
UCD3138RHAR	PREVIEW	VQFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
UCD3138RHAT	PREVIEW	VQFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

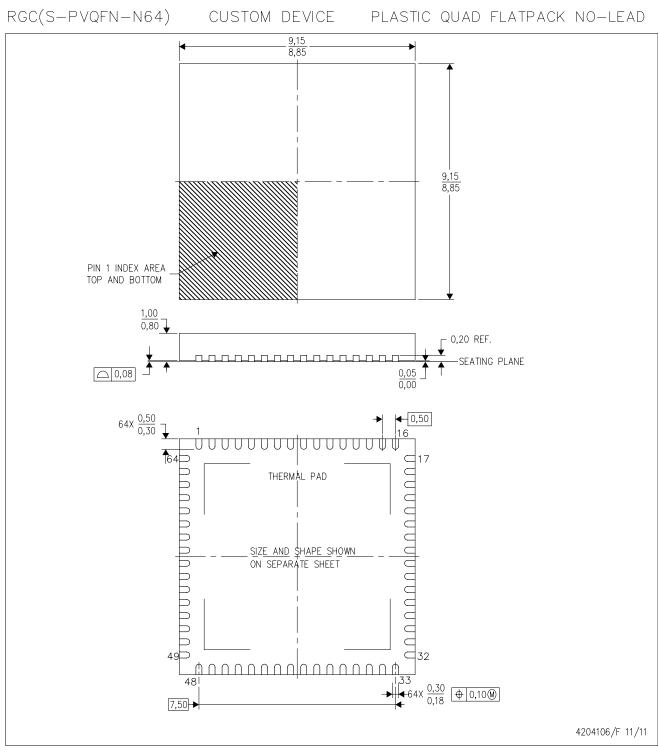
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.


Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

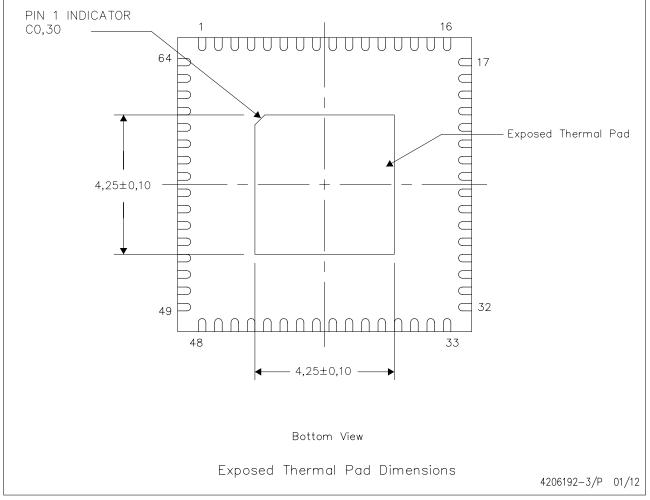
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5—1994.
 - B. This drawing is subject to change without notice.
 - C. Quad Flatpack, No-leads (QFN) package configuration.
 - D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
 - E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

RGC (S-PVQFN-N64)

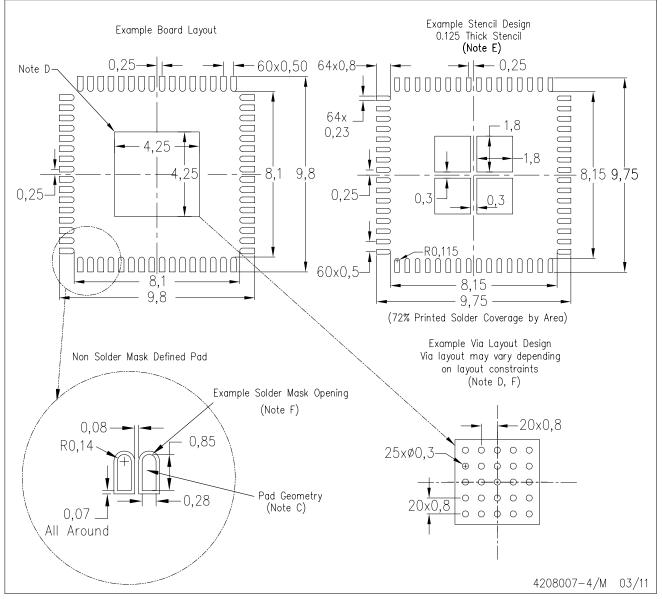

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

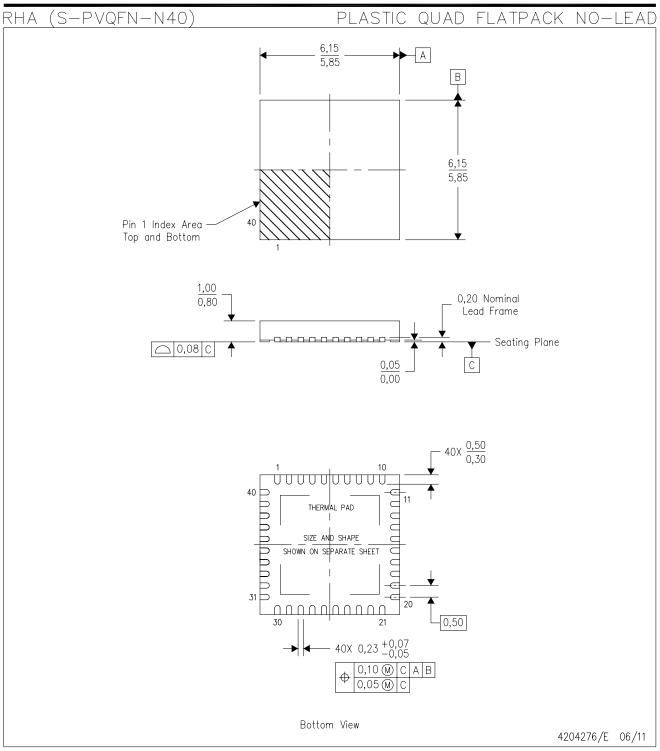
For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



NOTE: A. All linear dimensions are in millimeters

RGC (S-PVQFN-N64)


PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in thermal pad.

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
 - B. This drawing is subject to change without notice.
 - C. QFN (Quad Flatpack No-Lead) Package configuration.
 - D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
 - E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
 - F. Package complies to JEDEC MO-220 variation VJJD-2.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Applications

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Wireless Connectivity

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications dataconverter.ti.com Computers and Peripherals www.ti.com/computers **Data Converters DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt www.ti.com/space-avionics-defense power.ti.com Space, Avionics and Defense Microcontrollers Video and Imaging microcontroller.ti.com www.ti.com/video www.ti-rfid.com **OMAP Mobile Processors** www.ti.com/omap

TI E2E Community Home Page

www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

e2e.ti.com